Curse of dimensionality (Chapter 4, problem 4)

+ When the number of features p is large, there tends to be a
deterioration in the performance of KNN and other local approaches
that perform prediction using only observations that are near the
test observation for which a prediction must be made. This
phenomenon is known as the curse of dimensionality, and it ties
into the fact that non-parametric approaches often perform poorly
when p is large. We will now investigate this curse.



+(2)

» Suppose that we have a set of observations, each with
measurements on p = 1 feature, X. We assume that X is uniformly
(evenly) distributed on [0, 1]. Associated with each observation is
a response value. Suppose that we wish to predict a test
observation’s response using only observations that are within
10% of the range of X closest to that test observation. For
instance, in order to predict the response for a test observation
with X = 0.6, we will use observations in the range [0.55, 0.65].
On average, what fraction of the available observations will we use
to make the prediction?

1

+ On the interval (a,b) the uniform density function is —

Since b=1, and a=0, b-a=1 and
0.65
f dx = x|382 = 0.65 — 0.55 = 0.1
0.55



4(b)

+ Now suppose that we have a set of observations, each with
measurements on p = 2 features, X; and X5. We assume that
(X,X5) are uniformly distributed on [0, 1] x [0, 1]. We wish to
predict a test observation’s response using only observations that
are within 10% of the range of X; and within 10% of the range of
X5 closest to that test observation. For instance, in order to predict
the response for a test observation with X; = 0.6 and X5 = 0.35,
we will use observations in the range [0.55, 0.65] for X; and in the
range [0.3, 0.4] for X,. On average, what fraction of the available
observations will we use to make the prediction?



4(b) technical aside

+ A single continuous random variable, x;, has a density function,
f1(xy), and a distribution function,F;(x;) = Prob(X; < x;) =

ff; f1(ug)duy

+» There exist similar functions for multivariate random variables,
Xy Xp 1 €.9. f(xl,...,xp).

«» In the case where X;,.., X, are independent we can conclude

f(xb ""xp) = f(x)f (x2) '”f(xp)

0.65 0.4
fo.ss dX; f()_g dX, = (0.1) x (0.1) = 0.01



4(©)

+ Now suppose that we have a set of observations on p = 100
features. Again, the observations are uniformly distributed on each
feature, and again each feature ranges in value from 0 to 1. We
wish to predict a test observation’s response using observations
within the 10% of each feature’s range that is closest to that test
observation. What fraction of the available observations will we use
to make the prediction?

X fo(?;l-sss Xm "'IO(?;I-SSS XmOO —_ (0.1)100 —_ 10_100



4(d)

+» Using your answers to parts (a)-(c), argue that a drawback of KNN
when p is large is that there are very few training observations
“near” any given test observation.

+~ It's impossible to get any observation within the prescribed
distance.



4e)

+ Now suppose that we wish to make a prediction for a test
observation by creating a p-dimensional hypercube centered
around the test observation that contains, on average, 10% of the
training observations. For p = 1, 2, and 100, what is the length of
each side of the hypercube? Comment on your answer.

» Find ¢, and c, such that fcclz dX = 0.1

Let the length of side be ¢,-c;=6. Then when p=1, 6 =0.1
when p=2, §2=0.1 or 6=0.31
when p=100, 6190=0.1 or §=0.977

+ At large p the hypercube sides include the vast range of each
variable, so you can’t get very good predictions.



Chapter 5: Resampling Methods

+ Cross-validation. A method that will provide test error
measurements so we may evaluate it's performance or
assessment.

+» For techniques that may vary in flexibility, model selection can be
made with the help of cross-validation.

+~ Bootstrap, is a computer based resampling method for making
estimate of parameter bias, variance and confidence intervals.



Validation Set

+ We divide our observations at random into a training set, and a
validation or hold-out set.

+ The smaller the training set the less precise our parameter
estimates will be

+ The training set is used to estimate model parameters and the
validation set is used as an independent means of estimating error
usually via the MSE.




Validation Set

» Use the Auto mileage data and split the data evenly into a training
and test set.

+» The figure on the left is one split, on the right many independent

splits.

+» The test MSE vary a lot depending on the data included in the

+ The model estimates

training and test sets.

should improve if we
used more than 50%
of the observations.
Thus, these MSE
estimates are probably
overestimates of error
we would find if trained
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Leave-one-out Cross-validation (LOOCYV)

+ Suppose we had n-pairs of observations, (xy,¥1,).-.(X,,¥,). Then we
could leave out one observation, (x;V;), and train the model with
the remaining n-1 pairs.

+ The single left out pair can then be used to estimate a mean
squared error as, MSE; = (y; — 9;)?

+ Repeat this n-times and estimate the cross-validation error as
(PRESS*) (Vi) = =~ ¥k, MSE;

+ Now the test mse is less likely to be severely biased, since n-1 is
close to n, and it is not subject to the vagaries of which

observations went into the training and test sets of data.
* Prediction sum of squares (PRESS) was proposed in 1971 as a method for
choosing the best regression equations.
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TABLE TII

PRESS Values (in Units of 107) for
the Logistic and Theta Modeis in Each

of 25 Genetically Different Lines

Line Logistic Theta -
H 7.6 7
1 3.7 2.4
2 3.0 1.4
3 7.2 4.6
a 2.4 5.7
7 3.5 2.6
8 3.0 1.8
g 4.4 3.0
13 2.1 3.1
14 3.0 1.0
15 3.4 2.7
18 2.5 0.9
20 4.1 2.9
23 6.4 5.7
25 6.2 4.1
30 5.8 17
33 7.4 4.2
36 0.4 2.3
37 6.7 3.9
40 4.2 3.1
42 4.1 2.9
43 5.7 3.0
45 4.8 4.0
50 2.0 i.2
32 7.2 4.2




£-Fold Cross-Validation

+ Now divide the observations into k groups or folds (k is often 5 or
10). Use one fold as the test set and the remaining k-1 folds as the
training set. Repeat this k times. Then take the n/k observations in

the test set and estimate MSE; as %Z"f’i(yj - 37,-)2

j=

& NOW the Cross_ LOOCVY 10-fold CV
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£-Fold Cross-Validation

+ Compared to the leave one out method we only
our method rather than n.
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FIGURE 5.6. True and estimated test MSE for the simulated data sets in Fig-
ures 2.9 (left), 2.10 (center), and 2.11 (right). The true test MSE is shown in
blue, the LOOCYV estimate 1s shown as a black dashed line, and the 10-fold CV

estimate is shown in orange. The crosses indicate the minimum of each of the

MSE curves.

do 5 or 10 fits with

From simulations we see
both over and underestimates
of the true MSE.

Usually, the value of the MSE
is of little interest but the
location of the minimum is.



Bias vs. Variance trade-off for £-fold cross validation

+ The leave one out method should have very little bias since it is
using almost the entire data set to estimate parameters. Validation
sets (using 50% of the data) will overestimate MSE. The k-fold
cross validation will have intermediate bias.

+ However, the leave one out method should have higher variance.

+ Each training set in the leave one out method has highly
overlapping sets of observations. Thus, each of these training sets
has a higher variance for their mean MSE. Recall that the Var(x+y)
= Var(x) + Var(y)+2Cov(xy). This covariance term should be
positive when using almost the same data for different estimates of
MSE..

» James et al. suggest k=5 or 10 have been shown to have the best
balance of bias and variance.



Cross-Validation for Classification

+ The leave one out cross-validation
error rate is, CV =% 1 Err;, where
Erry = 1(y; # 31).

+ In each term 9, is computed from a
model trained without observation-i.

+» Logistic regression fits using
polynomials of increasing complexity.

+ Thought question: how do you do
LOOCV on K nearest neighbors?

Degree=1 Degree=2

Degree=3 Degree=4

FIGURE 5.7. Logistic regression fits on the two-dimensional classification data
displayed in Figure 2.13. The Bayes decision boundary is represented using a
purple dashed line. Estimated decision boundaries from linear, quadratic, cubic
and quartic (degrees 1-4) logistic regressions are displayed in black. The test error
rates for the four logistic regression fits are respectively 0.201, 0.197, 0.160, and
0.162, while the Bayes error rate is 0.133.



Cross-Validation for Classification

+ Logistic regression and KNN classification.
+~ Training error (blue) always goes down with complexity.

» 10-fold CV error (black) tends to underestimate the true error
(brown). CV error predicts best model well.
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The Bootstrap

+ Use the data as an empirical estimate of the underlying
distribution.

+ Example: invest a of your assets in X and 1-a in Y. The variance
and covariance of these investments are ¢7, o and oyy.

+ The variance of your returns are Var(aX+(1-a)Y)=a?*Var(X) +
(1 —a)?Var(Y) + 2a(1 — a)Cov(XY). Your goal is to find o that will
minimize the variation on your returns.

+ Take the derivative with respect to a and set to 0, solve for .

A2~
» This yields, & = 5L 2XY

0-X+0-12/_26-XY




Bootstrap
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FIGURE 5.9. Fach panel displays 100 simulated returns for investments
X and Y. From left to right and top to bottom, the resulting estimates for a
are 0.576, 0.532, 0.657, and 0.651.



Bootstrap

How to generate bootstrap samples

Let z be a 100 x 2 matrix with
100 observations of X and Y

z.pboot<- z[sample(1:100,s1ze=100, replace=T), ]

Note some samples may be taken
more than once.
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FIGURE 5.10. Left: A histogram of the estimates of « obtained by generating
1,000 simulated data sets from the true population. Center: A histogram of the
estimates of a obtained from 1,000 bootstrap samples from a single data set.
Right: The estimates of a displayed in the left and center panels are shown as
boxplots. In each panel, the pink line indicates the true value of c.



Bootstrap

+« If Z is the original sample of 100 observations. Then we can
identify the first bootstrap sample of 100 observation with
replacement as, Z*1. The second will be Z*2, up to Z78.

+ Each bootstrap sample provides an estimate of a; a*t,a*, ..., a*8

)

+» From these B estimates we can now estimate the mean, standard
deviation, and even an empirical confidence interval.

_ 1 k] A 1 nvi | =
dp = EZ?=1C¥ J, and SEp(&) = \/E ?:1(“ J — ag)?




Bootstrap

Example: the investment problem
library (ISLR)
library (boot)
alpha.fn=function (data ,index) {

X=dataS$X [index]

Y=dataSY [index]

return ((var (Y)-cov (X,Y))/ (var (X)+var(Y) -2* cov(X,Y)))
}
boot.alpha<- boot (Portfolio ,alpha.fn,R=1000)
boot.ci (boot.alpha)
#Output boot.alpha
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot (data = Portfolio, statistic = alpha.fn, R = 1000)
Bootstrap Statistics

original bias std. error

tl* 0.5758321 0.001672587 0.09039023
# Confidence intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL

boot.ci (boot.out = boot.alpha)

Intervals

Level Normal Basic

95% ( 0.3970, 0.7513 ) ( 0.4049, 0.7467 )
Level Percentile BCa

95% ( 0.4050, 0.7468 ) ( 0.4024, 0.7442 )

Calculations and Intervals on Original Scale



Bootstrap

+ Since each bootstrap sample is independent of the other, the
bootstrap is a perfect method for parallelization.

+» Currently the “boot” package isn’t set up to do this on Windows
computers.

+» Since running parallel processing is easy to set up on Windows and
Linux computers, and usually doing the bootstrap sampling is easy
to code it may not be worth using “boot” for large problems.

+ For more bootstrap details see: Efron, B. and R. J. Tibshirani,
1993. An Introduction to the Bootstrap. Chapman & Hall.



Parallel Processing in R

+~ Two packages need to be installed, “foreach” and “doParallel”
library (foreach)

library (doParallel)

registerDoParallel (cores=20) #Here you allocate the
number of cores that will
be used by foreach

a.grid<- foreach(x=l:length(a.list), .errorhandling =
c('remove')) S%Sdopars{..}

» If you have 100 bootstrap samples would there be a difference in
time to completion between using 20 cores or 22 cores, since with
22 most cores will still need to do 5 samples? -> YES, if there are
random components to the analysis of a sample.



Bootstrap: example niche overlap statistics

+ For each species there is vector reflecting the probability that a food
item (1 to n) is found in the diet of the animal.

+ So, for species 1 these are p,, ...,p, and for species 2, g, ..., g,.
+» Four different indices were examined (1) coefficient of community,

(2) Moristia’s index, (3) Horn’s index, and (4) Euclidian distance.

. . g . . . . (p._q.)z 1/2
+ For instance, the Euclidian distance statistic is, 1 — {Zi L /2}

+» Estimates and confidence intervals were compared for (i) the delta

method, (ii) the jackknife, and (iii) the bootstrap.

+ Suppose S is an estimator of an overlap statistic from a sample size
of n. Let S_; be the same estimate with the ith observation deleted.
Then n pseudovalues may be defined as, s; =nS — (n — 1)S_;

» Then the jackknife mean and variance are S =
%Zisi and Var(§) ——Y,(s; —5)2

n(n—1)




TasLe 3. The percent bias, variance, mean squared error
(msE), and confidence level (C.L.) for the delta (S5)), jackknife

Bootstrap: example niche overlap e e

Esti-

StatiStics =

5, 0.06 0.00142  0.00142 955+ 1.3 <— delta

S, 0.06 0.00142 000142 955 + 1.3 4—— jackknife
When the distribution is contaminated then the S& 04 00047 00047 98906 <— socisiop
confidence intervals for the delta method and § 01 oo oome 9mexi>
jackknife perform poorly. The bootstrap on the other hand ‘: ‘;jt ﬁﬁ}; Eﬁlj‘; 927?2
does well under all conditions. S, 003 00017% 000176 95213

S oa 0.00189  0.00189  98.5 + 0.8

B. Contamination = 0.10.
The bootstrap MSE is slightly larger so if one knows there 4 Py goEy Raeas
is no contamination then the other techniques may be " 03 000534 000534 95413

0.008 0.00856  0.00856 723+ 2.8
0.03 0.00866  0.00866 722+ 2.8

better.

by Snlmy [a) [l L) Il
- -

0.2 0.00898 0.00898 949 + 1.4

. . 0.9% 0.00363 0.00368 724 + 2.8

Lesson: MSE focusses on properties of the estimated Lt Yme s o

statistic while the confidence interval focusses on the C. Contamination = 0.2,

estimated variance and distribution properties of the ¥ AN Mo pml el e
statistic 5* o4 0.00955  0.00956  95.1 + 1.3 <= bootstrap

- S, 1.0% 0.00939  0.00946  64.7 + 3.0

S_ 0.7 0.00962 000965  64.4 + 3.0

For more details see: Mueller, L.D. and L. Altenberg, 1985. . ) 0% oo sl

Statistical inference on measures of niche overlap. S = MER A S

ECOIOgy 6 6 . 1 2 04 = 1 2 1 O . t We assume two categories of individuals that are sampled

as follows:

Type | individuals: py=080, g =0.15
Type Il individuals: p' =015 g¢' =080,

where p and g are the probabilities of two species utilizing
resource 1.
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