
Curse of dimensionality (Chapter 4, problem 4)

 When the number of features p is large, there tends to be a 
deterioration in the performance of KNN and other local approaches 
that perform prediction using only observations that are near the 
test observation for which a prediction must be made. This 
phenomenon is known as the curse of dimensionality, and it ties 
into the fact that non-parametric approaches often perform poorly 
when p is large. We will now investigate this curse.



4(a)
 Suppose that we have a set of observations, each with 

measurements on p = 1 feature, X. We assume that X is uniformly 
(evenly) distributed on [0, 1]. Associated with each observation is 
a response value. Suppose that we wish to predict a test 
observation’s response using only observations that are within 
10% of the range of X closest to that test observation. For 
instance, in order to predict the response for a test observation 
with X = 0.6, we will use observations in the range [0.55, 0.65]. 
On average, what fraction of the available observations will we use 
to make the prediction?

 On the interval (a,b) the uniform density function is 1
𝑏𝑏−𝑎𝑎

.
Since b=1, and a=0, b-a=1 and

�
0.55

0.65
𝑑𝑑𝑑𝑑 = 𝑑𝑑|0.55

0.65 = 0.65 − 0.55 = 0.1



4(b)

 Now suppose that we have a set of observations, each with 
measurements on p = 2 features, X1 and X2. We assume that 
(X1,X2) are uniformly distributed on [0, 1] × [0, 1]. We wish to 
predict a test observation’s response using only observations that 
are within 10% of the range of X1 and within 10% of the range of 
X2 closest to that test observation. For instance, in order to predict 
the response for a test observation with X1 = 0.6 and X2 = 0.35, 
we will use observations in the range [0.55, 0.65] for X1 and in the 
range [0.3, 0.4] for X2. On average, what fraction of the available 
observations will we use to make the prediction?



4(b) technical aside

 A single continuous random variable, x1, has a density function, 
f1(x1), and a distribution function,𝐹𝐹1 𝑑𝑑1 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋1 ≤ 𝑑𝑑1) =
∫−∞
𝑥𝑥1 𝑓𝑓1 𝑢𝑢1 𝑑𝑑𝑢𝑢1

 There exist similar functions for multivariate random variables, 
X1,.., Xp , e.g. 𝑓𝑓 𝑑𝑑1, … , 𝑑𝑑𝑝𝑝 .

 In the case where X1,.., Xp are independent we can conclude 
𝑓𝑓 𝑑𝑑1, … , 𝑑𝑑𝑝𝑝 = 𝑓𝑓 𝑑𝑑1 𝑓𝑓 𝑑𝑑2 ⋯𝑓𝑓 𝑑𝑑𝑝𝑝

 ∫0.55
0.65 𝑑𝑑𝑋𝑋1 ∫0.3

0.4 𝑑𝑑𝑋𝑋2 = 0.1 × 0.1 = 0.01



4(c)

 Now suppose that we have a set of observations on p = 100 
features. Again, the observations are uniformly distributed on each 
feature, and again each feature ranges in value from 0 to 1. We 
wish to predict a test observation’s response using observations 
within the 10% of each feature’s range that is closest to that test 
observation. What fraction of the available observations will we use 
to make the prediction?

 ∫0.45
0.55 𝑑𝑑𝑋𝑋1 …∫0.45

0.55 𝑑𝑑𝑋𝑋100 = 0.1 100 = 10−100



4(d)

 Using your answers to parts (a)–(c), argue that a drawback of KNN 
when p is large is that there are very few training observations 
“near” any given test observation.

 It’s impossible to get any observation within the prescribed 
distance.



4(e)

 Now suppose that we wish to make a prediction for a test 
observation by creating a p-dimensional hypercube centered 
around the test observation that contains, on average, 10% of the 
training observations. For p = 1, 2, and 100, what is the length of 
each side of the hypercube? Comment on your answer.

 Find c1 and c2 such that ∫𝑐𝑐1
𝑐𝑐2 𝑑𝑑𝑋𝑋 = 0.1

Let the length of side be c2-c1=δ. Then when p=1, δ =0.1
when p=2, δ2=0.1 or δ=0.31
when p=100, δ100=0.1 or δ=0.977

 At large p the hypercube sides include the vast range of each 
variable, so you can’t get very good predictions.



Chapter 5: Resampling Methods

 Cross-validation. A method that will provide test error 
measurements so we may evaluate it’s performance or 
assessment.

 For techniques that may vary in flexibility, model selection can be 
made with the help of cross-validation.

 Bootstrap, is a computer based resampling method for making 
estimate of parameter bias, variance and confidence intervals.



Validation Set

 We divide our observations at random into a training set, and a 
validation or hold-out set.

 The smaller the training set the less precise our parameter 
estimates will be

 The training set is used to estimate model parameters and the 
validation set is used as an independent means of estimating error 
usually via the MSE.



Validation Set
 Use the Auto mileage data and split the data evenly into a training 

and test set.
 The figure on the left is one split, on the right many independent 

splits.
 The test MSE vary a lot depending on the data included in the 

training and test sets.
 The model estimates

should improve if we
used more than 50%
of the observations.
Thus, these MSE
estimates are probably
overestimates of error
we would find if trained
on the entire set of
observations.



Leave-one-out Cross-validation (LOOCV)

 Suppose we had n-pairs of observations, (x1,y1,)…(xn,yn). Then we 
could leave out one observation, (xi,yi), and train the model with 
the remaining n-1 pairs. 

 The single left out pair can then be used to estimate a mean 
squared error as, 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

 Repeat this n-times and estimate the cross-validation error as 
(PRESS*) 𝐶𝐶𝐶𝐶(𝑛𝑛) = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

 Now the test mse is less likely to be severely biased, since n-1 is 
close to n, and it is not subject to the vagaries of which 
observations went into the training and test sets of data.
* Prediction sum of squares (PRESS) was proposed in 1971 as a method for 
choosing the best regression equations.



PRESS



k-Fold Cross-Validation

 Now divide the observations into k groups or folds (k is often 5 or 
10). Use one fold as the test set and the remaining k-1 folds as the 
training set. Repeat this k times. Then take the n/k observations in 
the test set and estimate MSEi as 𝑘𝑘

𝑛𝑛
∑𝑗𝑗=1
𝑛𝑛/𝑘𝑘 𝑦𝑦𝑗𝑗 − �𝑦𝑦𝑗𝑗

2

 Now the cross-
validation MSE 
estimate is, 

 𝐶𝐶𝐶𝐶(𝑘𝑘) = 1
𝑘𝑘
∑𝑖𝑖=1𝑘𝑘 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖



k-Fold Cross-Validation
 Compared to the leave one out method we only do 5 or 10 fits with 

our method rather than n.
From simulations we see
both over and underestimates
of the true MSE.

Usually, the value of the MSE
is of little interest but the 
location of the minimum is.



Bias vs. Variance trade-off for k-fold cross validation
 The leave one out method should have very little bias since it is 

using almost the entire data set to estimate parameters. Validation 
sets (using 50% of the data) will overestimate MSE. The k-fold 
cross validation will have intermediate bias.

 However, the leave one out method should have higher variance.
 Each training set in the leave one out method has highly 

overlapping sets of observations. Thus, each of these training sets 
has a higher variance for their mean MSE. Recall that the Var(x+y) 
= Var(x) + Var(y)+2Cov(xy). This covariance term should be 
positive when using almost the same data for different estimates of 
MSEi. 

 James et al. suggest  k=5 or 10 have been shown to have the best 
balance of bias and variance.



Cross-Validation for Classification

 The leave one out  cross-validation 
error rate is, 𝐶𝐶𝐶𝐶(𝑛𝑛) = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑀𝑀𝑃𝑃𝑃𝑃𝑖𝑖, where 

𝑀𝑀𝑃𝑃𝑃𝑃𝑖𝑖 = 𝐼𝐼 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖 . 
 In each term �𝑦𝑦𝑖𝑖 is computed from a 

model trained without observation-i.
 Logistic regression fits using 

polynomials of increasing complexity.
 Thought question: how do you do 

LOOCV on K nearest neighbors?



Cross-Validation for Classification

 Logistic regression and KNN classification.
 Training error (blue) always goes down with complexity.
 10-fold CV error (black) tends to underestimate the true error 

(brown). CV error predicts best model well.



The Bootstrap

 Use the data as an empirical estimate of the underlying 
distribution.

 Example: invest α of your assets in X and 1-α in Y. The variance 
and covariance of these investments are 𝜎𝜎𝑋𝑋2, 𝜎𝜎𝑌𝑌2 and σXY.

 The variance of your returns are Var(αX+(1-α)Y)=𝛼𝛼2𝐶𝐶𝑉𝑉𝑃𝑃 𝑋𝑋 +
1 − 𝛼𝛼 2𝐶𝐶𝑉𝑉𝑃𝑃 𝑌𝑌 + 2𝛼𝛼 1 − 𝛼𝛼 𝐶𝐶𝑃𝑃𝐶𝐶(𝑋𝑋𝑌𝑌). Your goal is to find α that will  

minimize the variation on your returns.
 Take the derivative with respect to α and set to 0, solve for α.

 This yields, �𝛼𝛼 = �𝜎𝜎𝑌𝑌
2−�𝜎𝜎𝑋𝑋𝑌𝑌

�𝜎𝜎𝑋𝑋
2+�𝜎𝜎𝑌𝑌

2−2�𝜎𝜎𝑋𝑋𝑌𝑌



Bootstrap

To simulate these bivariate random variables
mean.a<- c(0,0)
var.a<- rbind(c(1,0.5),c(0.5,1.25))
library(mvtnorm)
random.a<- rmvnorm(1,mean=mean.a,var=var.a)
# For more than 1 random vector replace “1”
# with the desired number.



Bootstrap
How to generate bootstrap samples
Let z be a 100 x 2 matrix with
100 observations of X and Y
z.boot<- z[sample(1:100,size=100,replace=T),]

Note some samples may be taken
more than once.



Bootstrap

 If Z is the original sample of 100 observations. Then we can 
identify the first bootstrap sample of 100 observation with 
replacement as, Z*1. The second will be Z*2, up to Z*B. 

 Each bootstrap sample provides an estimate of a; �𝛼𝛼∗1, �𝛼𝛼∗2, … , �𝛼𝛼∗𝐵𝐵

 From these B estimates we can now estimate the mean, standard 
deviation, and even an empirical confidence interval.

�𝛼𝛼𝐵𝐵 = 1
𝐵𝐵
∑𝑗𝑗=1𝐵𝐵 �𝛼𝛼∗𝑗𝑗, and 𝑀𝑀𝑀𝑀𝐵𝐵 �𝛼𝛼 = 1

𝐵𝐵−1
∑𝑗𝑗=1𝐵𝐵 �𝛼𝛼∗𝑗𝑗 − �𝛼𝛼𝐵𝐵 2





Bootstrap Example: the investment problem
library(ISLR)
library(boot)
alpha.fn=function (data ,index){
X=data$X [index]
Y=data$Y [index]
return ((var(Y)-cov (X,Y))/(var(X)+var(Y) -2* cov(X,Y)))

}
boot.alpha<- boot(Portfolio ,alpha.fn,R=1000)
boot.ci(boot.alpha)
#Output boot.alpha
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = Portfolio, statistic = alpha.fn, R = 1000)
Bootstrap Statistics :

original      bias    std. error
t1* 0.5758321 0.001672587  0.09039023
# Confidence intervals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL : 
boot.ci(boot.out = boot.alpha)
Intervals : 
Level      Normal              Basic         
95%   ( 0.3970,  0.7513 )   ( 0.4049,  0.7467 )  
Level     Percentile            BCa
95%   ( 0.4050,  0.7468 )   ( 0.4024,  0.7442 )  
Calculations and Intervals on Original Scale



Bootstrap

 Since each bootstrap sample is independent of the other, the 
bootstrap is a perfect method for parallelization.

 Currently the “boot” package isn’t set up to do this on Windows 
computers. 

 Since running parallel processing is easy to set up on Windows and 
Linux computers, and usually doing the bootstrap sampling is easy 
to code it may not be worth using “boot” for large problems.

 For more bootstrap details see: Efron, B. and R. J. Tibshirani, 
1993. An Introduction to the Bootstrap. Chapman & Hall.



Parallel Processing in R
 Two packages need to be installed, “foreach” and “doParallel”
library(foreach)
library(doParallel)
registerDoParallel(cores=20) #Here you allocate the

number of cores that will
be used by foreach

...
a.grid<- foreach(x=1:length(a.list),.errorhandling = 
c('remove')) %dopar%{…}

 If you have 100 bootstrap samples would there be a difference in 
time to completion between using 20 cores or 22 cores, since with
22 most cores will still need to do 5 samples? -> YES, if there are 
random components to the analysis of a sample.



Bootstrap: example niche overlap statistics
 For each species there is vector reflecting the probability that a food 

item (1 to n) is found in the diet of the animal.
 So, for species 1 these are p1, …,pn and for species 2, q1, …, qn.
 Four different indices were examined (1) coefficient of community, 

(2) Moristia’s index, (3) Horn’s index, and (4) Euclidian distance. 

 For instance, the Euclidian distance statistic is, 1 − ∑𝑖𝑖 �𝑝𝑝𝑖𝑖−𝑞𝑞𝑖𝑖 2
2
1/2

 Estimates and confidence intervals were compared for (i) the delta 
method, (ii) the jackknife, and (iii) the bootstrap.

 Suppose �̂�𝑀 is an estimator of an overlap statistic from a sample size 
of n. Let �̂�𝑀−𝑖𝑖 be the same estimate with the ith observation deleted. 
Then n pseudovalues may be defined as, 𝑠𝑠𝑖𝑖 = 𝑛𝑛�̂�𝑀 − (𝑛𝑛 − 1)�̂�𝑀−𝑖𝑖

 Then the jackknife mean and variance are �̃�𝑀 =
1
𝑛𝑛
∑𝑖𝑖 𝑠𝑠𝑖𝑖 𝑉𝑉𝑛𝑛𝑑𝑑 𝐶𝐶𝑉𝑉𝑃𝑃(�̃�𝑀) 1

𝑛𝑛(𝑛𝑛−1)
∑𝑖𝑖 𝑠𝑠𝑖𝑖 − �̃�𝑀 2



Bootstrap: example niche overlap
statistics

When the distribution is contaminated then the 
confidence intervals for the delta method and 
jackknife perform poorly. The bootstrap on the other hand
does well under all conditions.

The bootstrap MSE is slightly larger so if one knows there
is no contamination then the other techniques may be
better.

Lesson: MSE focusses on properties of the estimated 
statistic while the confidence interval focusses on the 
estimated variance and distribution properties of the 
statistic.

For more details see: Mueller, L.D. and L. Altenberg, 1985. 
Statistical inference on measures of niche overlap. 
Ecology 66: 1204-1210. 

delta
jackknife
bootstrap

delta
jackknife
bootstrap
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